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Abstract. The derivation d r  on the exterior algebra of forms on a manifold M with values in 
the exterior algebra of forms on the tangent bundle TM is extended to multivector fields. These 
tangent lifts are studied with application to the theory of Poisson structu~s,  their symplectic 
foliations, canonical vector fields and Poisson-Lie groups. 

Introduction 

A derivation dT on the exterior algebra of forms on a manifold M with values in the 
exterior algebra of forms of the tangent bundle TM plays essential role in the calculus of 
variations ([Tul, TuZJ) and, in particular, in analytical mechanics. The derivation dTW of the 
symplectic 2-form of a symplectic manifold (M, U) provides the tangent bundle TM with a 
symplectic structure. A vector field X: M + TM is locally Hamiltonian if its image X(M) 
is a Lagrangian submanifold  of^ (TM, dT0). The concept of a generalized Hamiltonian 
system can be introduced as a Lagrangian submanifold of (TM, dTw): The infinitesimal 
dynamics of a relativistic particle is an example of such a system. The derivation dT has 
also an aspect of the total Lie derivative in the exterior algebra of forms: Xxp = X*dTp 
(theorem 3.2). 

In analytical mechanics Poisson structures play a role that is as important as symplectic 
structures. The phase space is considered to be a manifold possessing a Poisson structure 
rather than symplectic one. On the other hand, in the theory of systems with symmetries, 
much attention is paid to the case of Poisson symmetries, i.e. the symmetry group is a 
Poisson-Lie group. Poisson-Lie groups are of interest also because of their relation to 
quantum groups. 

A Poisson structure is usually given by a bivector field A and. in general, not by a 
two-form and vanishing of the Schouten bracket corresponds to vanishing of the exterior 
derivative. This shows that, in order to generalize the mentioned ideas and results from 
the symplectic to the Poisson case, we need to cany over the discussion from ,forms 
to multivector fields. The aim of this paper is to extend dT to the exterior algebra of 
multivector fields and to establish relations concerning Poisson structures which correspond 
to the mentioned above relations in symplectic geometry. We wouId like to emphasize that 
our goal is not to extend the general theory of derivations of forins or vector-valued forms 
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(like in [MCSI-3, By]) to the case of multivector fields, but purely to get an analogue of 
dT. 

In sections 1 and 2 we concentrate on the definition of d-r on the exterior algebra of 
forms. The usual definition of dT as a commutator [iT, dl does not emphasize the role of the 
tangent functor and, since it uses the exterior derivative d, cannot be generalized to the case 
of multivector fields. An r-form p on M defines a number of vector bundle morphisms 
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$: K'TM --f f,?~. 
We show that dTpi can be obtained from the tangent morphism T 2  by natural trans- 
formation ([KMS]) of functors, which generalize the well-known natural transformations 
~ M : I T * M  -+ T*TM and KM:TTM -+ TTM. With this fact, the generalization of dT to 
the case of multivector fields becomes obvious and it is given in section 2 (theorem 2.2). 
It appears that dT is a VT-deriVatiOn of the exterior algebra of multivector fields on M with 
values in the exterior algebra of multivector fields on TM, where VT is the vertical lift. In 
the case of a vector field X on M the resulting field dTx is the well-known complete lift 
(see, e.g., [ME]).  

The basic property of dT is that it commutes with the Schouten bracket (theorem 2.5), 
what corresponds to the fact that dT commutes with d on forms. Thus, if A is a bivector field 
representing a Poisson Structure on M, then dTA defines a Poisson structure on T M .  We 
observe that dTA is the tangent Poisson structure discussed in [SdA,Col]. In the presented 
approach certain functorial properties of dT become quite obvious. 

In section 3 we show that, as in the case of forms, dT plays the role of the total Lie 
derivative. As a consequence, we can describe in section 6 a canonical vector field on a 
Poisson manifold as a Lagrangian submanifold with respect to the tangent Poisson structure 
introduced in section 5 (compare with [SdA]). The presentation of the tangent Poisson 
structure in section 5 is close to that given by Courant in [CoI,CoZ,Co3]. 

The derivation dT helps to identify vector bundle morphisms u:T*M + TM, which 
correspond to Poisson structures (theorem 4.4). This identification is complementary to ones 
expressed in terms of the Jacobi identity and of the Schouten bracket: What is important 
is that the condition for U is expressd in terms of objects and morphisms and does not 
require any additional general operations like exterior derivative and the Schouten bracket. 
Hence, it is a subject for functorial treatments. 

The remaining part of the paper is devoted to the tangent lift of Poisson-Lie structures 
and to the analysis of the symplectic foliations of tangent Poisson manifolds. We show in 
section 7 that the tangent group of a Poisson-Lie group (G, A) with the tangent Poisson 
structure is again a Poisson-Lie group.' Its Poisson-Lie algebra is the tangent Poisson-Lie 
algebra of the Poisson-Lie algebra of (G, A) (section 8). In section 9 we define the tangent 
lift of a generalized foliation and in section IO we prove that the symplectic foliation of 
the tangent Poisson manifold ( T M ,  dTh) is the tangent lift of the symplectic foliation of 
(M, N. 

1. Geometric preliminaries 

In this section we define morphisms 

K;: ~ T T M  -+ T ~ T M  
and 

&a: ~ T * T M  -, TA'T*M 
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which generalize the well-known isomorphisms K~ and &M = a;'. Functorial properties of 
these mappings and their duals are discussed. 

Let M be a smooth manifold. By rM:TM --t M we denote the tangent fibration 
and by 7 r ~ :  T*M -+ M the cotangent fibration. For r = 0,1,2,. . ., we define exterior 
product bundles I\ 'TM and A\'T*M with the canonical projections r h : A ' T M  --t M 
and xh: I\'T*M -+ M respectively. For r = 0 we have A ' T M  21 I\OT*M N M x R. 

There is a collection of canonical pairings 

(, )L: KTM x M  KT*M + R. 

(, ) f ; M : ~ A r ~ ~  xTM TA~T*M + TR -, T,,R = R. 

By applying the tangent functor to these pairings, we obtain tangent pairings 

We used the canonical identification of bundles 

TA~TM x T M  TKPM Y T(KTM x M  K F M ) .  
Let (xi) be a local coordinate system in M .  In the bundles X T M ,  T * M ,  T T M  

and TI\' T*M we have adopted coordinate systems 

respectively, where j ,  c j ,  < . . . c j r s  etc. 
introduced read as follows: 

( x i ,  xjl-.jr), ( x i ,  pJ ,... j , ) ,  (xi, xj l - j , ,  6 x y ,  Sxf t - ' r )  and (xi, p j  ,_._ j , ,  x k ,  pl,... 1,) 

In these coordinates the pairings thus 

(, )L: ( (x i ,  i'l...j,), ( X i .  p,l,.&)) H 

(, )" T M '  ' ((2, i'I...j,, s x k ,  S i r ~ J ~ ) ,  (xi, pj1,..j,, 8 2 ,  

xjl-J,pj ,_.. jr 
j,<j%<-<j, 

and 

,,,,, )) 
. .  C ( 8 p  ... j r .  pi ,,_, j ,  +fIl-J, . $. . ) 

Ji...I, ' 
j , <  ... <J, 

For each manifold M there is a canonical diffeomorphism (cf [Tul]) 

K ~ : T T M  + T T M  

which is an isomorphism of vector bundles 

T T M : T T M  4 T M  and T r M : T T M  + T M .  
In particular, 

T T M  o KM = TZM and TTM o K M  = q ~ ,  

Regarded as a diffeomorphism of T T M ,  K~ is involutive: K& = IdmM. By aM we denote 
the isomorphism 

a M : ~ * ~  + T*TM 
of vector bundles 

TTM:TT*M -+ T M  and KTM:T*TM -+ T M  
dual to KM with respect to pairings (, )iM = (, )<iM and (, ) T ~  = (, &: 

(U, W ( W ) ) T M  = ( K M ( u ) ,  

In what follows, we denote a;' by E M .  In the above-introduced local coordinates in T T M ,  
TT*M and the coordinates ( x i , f j ,  nn, 4) adopted from ( x ' )  in T*TM,  we have 

( x i .  f j ,  8 x k ,  8 2 )  0 Ky = (xi, 8 x j ,  kk, 8 2 )  
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and 
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(x i ,  XI, J Q ,  i )  0 ay = ( X i ?  ij, p k ,  p l ) .  

Now, we generalize these morphisms to the multilinear case. Let be the wedge 
product mapping 

KM: x : ~ T M  + K T M .  

We apply the tangent functor to this mapping and get . 
TKM:T x:, TM + TKTM.  

Since K~ extends to an isomorphism of vector bundles 

X'KM: x & T M  -+ x;,."TTM T XG, T M  

we get also 

T A L  o (x 'KM) :  x&,l-rM -+ T K T M .  

It is easy to verify that this mapping is multilinear and skew-symmetric and, 
consequently, defines a morphism K L  of vector bundles over TM: 

K L :  KnM -+ T K T M .  (1.1) 

In other words 

K L @ K  TM = T A L @ X r K y  

i.e. the following diagram is commutative: 

1 Ay 
T & T M  + TA'TM. 

Of course, K: = K y  and for a simple r-vector U, A . .  . A U, on TM we have 

K; (u I  A . .  . A U,) = TAL(K~(U,), . . . .KM(U' ) ) .  

In local coordinates KL reads as follows: 

where ( x i ,  .?I, 8xXk1-.kn A Sx'm+l-.'v) are adopted coordinates in A'TTM, with the obvious 
identification 

8xl~. . . /m-~ A g i l m  ,, gXIm+t ... l ,  = (_ l ) ' -mgx l '  ... l.-lln+l ... /, A ax". . 
Let 'A; be the wedge product 
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From the diagram (1.2) we easily get that the diagram 

TA'TM KL X T T M  - 
is commutative. 

In order to define EL, a counterpart to K$, we first consider the mapping 

TA;*~ o ( x ' E ~ M ) :  x r  "TM T*TM + T/\'T*TM. 

Since it is multilinear and skew-symmetric, it defines a mapping 

EL: A\'T*TM .+ TKT*M 
and, as in the case of K&, we have 

EL o A' = TALM o X ' E ~  
nTM 

i.e. the diagram 

TAL 
T X ; ~ T * M  + T/\'T*M 

is commutative. 
Let (.xi, x i ,  ~ ~ l - . ~ *  A ki"+l-i,) be the adopted coordinate system in I\'T*TM. We have 

) (xi, pj ,... j ,  , x k 9  P I  ,_.. i , )  0 E L  = X i ,  +jq...j,, Xk, *f ,.... im-, A Zfm A kin,+ ,._. i, . ( m 

Here we identified ei ,... tm., A %  A kim+ ,_.. I, and (-1)m-'w#, A lir ,... L i m +  ,... I , .  
We have also a commutative diagram 

E h  X E r  I\'T*TM xTM I\'-'T*TM T/\'T*M XT~TI\'-~T*M 

1 
/\IT*TM - EL T~\'T*M. 

By KL' and EL' we denote the vector bundle morphism 

K$':TI\IT*M + /\~T*TM 

E&': TKTM --f KTTM 
and 

dual to KL and EL with respect to the pairings ( , ) k M r  and ( , ) :M.  In particular, we have 
1 ) -  I - KM - K M  = &; = f f ~  and E$' = KM. 
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Functorial properties 

It is known that K, and ay are natural transformations of iterated functors TT, TT* and 
T*T, i.e. that for every morphism (0: M + N we have 

J Grabowski and P Urbm'ski 

K N  O n 9  = TTlp 0 KM 

ctM o TT*C = T * T ~  o U N  (1.6) 
T T * ~ o & N = E M o T  * Tq. 

Note that T*(o is, in general, not a mapping but a relation only, with the domain T&,,N 
and codomain (kerTq)O. The morphisms 

K T ? :  K T M  -+ K T N  

and 

KT*(o:KT*N + A r T * M  
are defined by relations 

K T v  0 A', = A'N 0 X'Tip 

KT*(O 0 A', = A', 0 i'T*(o. 

and 

Theorem 1.1. For 9: M -+ N we have 

K L  0 A'n(0 = T/\'T9 0 K L  

and 

TKT* (0  0 E h  = E h  0 KT*T(0. 

ProoJ From the definition of K& it follows that 

KL o A'nq c Ai, = K;Y c A;, o X ' T ~  = TK~ o X'KN o x r n q  

= r&, 0 x r ( K N  0 TT~) = T/\" o x r ( n p  c K M )  

= TxN 0 X ' n P  0 X ' K M .  

Since 

ArT(O 0 = KN 0 X'T9 
we get 

TA'Trp 0 TA'M = 0 X r n ( O  

and 

TA; o x r v p  0 X ~ U M  = T A ~ T ~  o TA'~ o X ~ K M  = TKT~ o KL o AiM. 
This completes the proof of the first identity. The proof of the second is analogous. 0 

We have also the following dual identities. 
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2. Derivation dT of differential forms and multivector fields 

In this section we refer to the theory of derivations of differential forms as presented 
in [PiTu]. We define the derivation dT on forms in a way which differs from the standard 
one, but which shows its obvious extension to the case of multivector fieIds. It appears that 
defined operation dT on multivector fields is a derivation of degree zero with respect to the 
vertical lift of multivector fields. The most important property of dT is that it commutes 
with the Schouten bracket. 

Definition. Let Q = $E+ W and Y = $" Wq be commutative graded algebras and 
let p :  Q + Y be a graded algebra homomorphism. A linear mapping a: Q + '4 is called 
a p-derivation of degree r if 

4 9  

a(Q4) c Y4*' 
and 

& A  v )  = a @ . )  A P ( u )  + (-I)"P(W) A a(v) 
where q = .degree p. 

Let M be a manifold and let r :  E - M be a vector fibration. By O ( r )  we denote the 
graded exterior algebra generated by sections of r .  For r = X M  we get the graded algebra 
of forms on the manifold M and for r = TM- the graded algebra of multivector fields on 
M. 

Let be p E W ( X M ) ,  i.e. p is an r-form on M. The vertical lift of p is an r-form 
V T ( ~ )  E Q'(xTM), V T ( ~ )  = r$p, i.e. V T ( ~ )  is the pull-back of p with respect to the 
projection T M .  Since the pull-back commutes with the wedge product, the mapping 

VT: Q ( ~ M )  + WTTM) 
is a homomorphism of graded commutative algebras. 

A second-order vectorfield r on M is a vector field on TM such that 

TTM 0 r = idTM = ( T ~ M )  0 r 
or, equivalently, KM o r = r. In adopted local coordinates 

L a  k a r ( x , i ) = i  - + f  (~, i ) -  
a x k  a i k  ' 

The contraction of the vertical lift of a form p E W ( X M ) ,  r > 0, with r does not depend 
on the choice of the second-order field r. We define 

ir(vTp) E @'- ' (TTM)  for r 0 

l o  for r = 0. 
ITW 

The tangent lift dTp of p E Q ( ~ F M )  is defined by 

dTp = diTp -k iTdp = k'rV~(p), 
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Since -Er is a derivation in Q ( T T ~ )  and VT is a homomorphism of graded algebras, it 

If, in local coordinates, p = pi, .. ;,&'I A . ' . A dx", then 
follows that dT is a vT-derivation of degree 0. 

(2.1) 

for r > 0 and 

for r =~ 0. 

more intrinsic way. An r-form p, r L- 0, defines a vector bundle morphism 
The operation iT, which is, in fact, a vr-derivation of degree -1,'can be defined in a 

~ P : T M  -, K'-'T*M:~ H iup 

and the following formula holds: 
"I * 7-1 iTp = b ) 0, 

where 8L-I is the canonical (Liouville) (r - I)-form on X-'T*M. The Liouville form is 
defined by 

6'~-1(a)(ul,. . . , ur- l )  = a(TxM(u,), . . . T T M ( u ~ - I ) ) .  
Let us notice also that for r = 0 we have dTp(u) = (u ,d@)  (p  is a function). 
The tangent lift dTp can be defined more directly by means of the tangent functor. Let 

us f ix 0 < i < r. An r-form p on M &fines, in an obvious way, a vector bundle morphism 

Now, we define KL and for r = 0. We have A0TM = A0T*M = M x 1. We 
define 

KM- 0 - M : A'TTM = TM x R --z TA'TM = T(M x q = TM x P x T ~ P  

by 

The dual mapping K:': TAOTM + AoTTM is given by 
0 '  

(Xi, f ' ,  f, i) 0 K L  = (Xi, f ' ,  0, t ) .  

. , .  . .  
( x ' ,  XJ, r) o K,,, = ( x ' ,  X J ,  i). 

Theorem 2.1. Let be p E W(TM)  and 0 < i < r. The following diagram is commutative: 

(2.3) 

d z '  
/\'TTM --+ K-'T*TM. 
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Prooj We show first that there exists D ( p )  E W(RTM) such that 
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D(W) = ( K M  TF- -i I--i I 

In order to do this, we apply the tangent functor to the commutative diagram 

R ii' I\'TM - 
(2.4) 

Ar+T*M x M  A\'-'TM 
$ x id 

and, since the diagram (1.5) is commutative, we get the following commutative diagram: 

I\'TM x M  K-'TM 

R d+' K T r M  & T K T M  - 
fA;;T TiA2T (. )G1 

y f  X K F  T2"x id K'TM xTDl K - ' r r M  M T ~ T M  xTM TI\'-'TM - TK-'T*M xYM TK-'TM 

(2.5) 
Here we regard 0-forms as functions rather than sections of A'T-bundles. It shows 

that for U E A ' l T M  and U E A\'-'TTM we have 

(T$ 0 K&(U) ,  KZ(u))';: = dTT 0 &(U A U) 

and, consequently, 

dTii'oKh(UAU)= ( ( K h - ; ; i ) ' ~ T $ o K ~ ( U ) , U ) ; ~ .  

It follows that D ( p )  exists and D(p) ( . )  = dTF o KL. Since in local coordinates 
. .  -r p ( x ,  i) = pi,...i,i""'~~ 

we get 

dTT(X,X,6X,6i) - abi,...;, (x)sx'ih...G + (x)s+.G 
axk 

and 

d r r  o KL ='- ak.,.i, (x)p6xic...L + C p j  ,,,, i,(x)~xi~...cm.> ,,&+ A Jxim+t ..& 

The right-hand side of this formula corresponds precisely to the right-hand side of (2.1). It 
0 

m 

follows that d T 7  o K L  = d z  and this completes the proof. 

Derivations of multivectorfelds and the Schouren bracket 

A similar construction can be done in the case of multivector fields. Let be X E W ( T M ) .  
As in the case of forms, we have a family of contraction mappings 

~?:I\"T*M -+ K-~TM. 
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Theorem 22.  There is a uniquely defined multivector field dTX E W(TT,,,) such that 
- i  drX = (ET')' o T,? o 

for i = 0, 1, . . . , r ,  i.e. the following diagram is commutative 

TZ' T/\'T*M -- TK-'TM 

d';x' A'T*TM --+ /\'-'TTM. 

The proof follows that of theorem 2.1. In particular, we get - 
dyX' = dTX' o E; 

i.e. 
* 

dTX(Ul.. . . , U r )  = dTX'(&MUl A .  . . A &,+,U,). 

Now, writing in local coordinates 
. .  a a 

axi, ax, 
(X)- A . . I  A - x =xu ...' 

and p = pi,,,.i,dxil A . . . A &",we have 
I 

X'(p) = xi-i,pil.,.i, 

and 

dTX'(Xi, ik, Ti i...rm A ti,, ,... i,) - 

i.e. 

Now, let X be a simple r-vector field, i.e. X = XI A . . . A X, for some vector fields 
Xi E @(TU). We can consider X' as a multilinear, skewsymmetric function on x',T*M 
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Let Y E 4 ' ( tM)  be a vector field on M .  The functions v&') o E,,, and dT(?) o E,,, are 
linear functions on T*TM and  define^ vector fields on TM. In local coordinates we have 
the following for Y = Yia/axi: 

r"'(x, p )  = Y'(x)pi and v#)(x,p,i, e)  = Y'(x)pi. 

Hence, from the definition of &M, - 
VT(Yl) 0 &y(X, X ,  JC, k) = Y'(X)ki. 

I t  follows that VT(?) o EM = F', where Y" = Y'(x)a/ai' is the vertical lifr of Y.  The 
vertical lift @ ' ( T M )  3 Y H Y" E @'(TTM) is linear and can be extended in a unique way 
to a homomorphism VT of graded algebras 

VT: WTM) + Q(TTM). 

The vertical lift Y" is the generator of a one-parameter group ($') of diffeomorphisms (a 
flow) of TM defined by 

*'(U) = U + ~Y(TM(U)). 

In a similar way we get 

and 

- 1  It follows that dTY"' o E,,, = Yc , where 

is the complete lifr of Y. The vector field Yc is the generator of the (local) one-parameter 
group of diffeomorphisms Tp':TM + TM, where (p') is the flow generated by the vector 
field Y. 

Thus we have proved the following theorem. ~ ' 

Theorem 2.3. The mapping 

dT: ~ ( T M )  + a(7Th.I) 

is a vT-derivation of degree 0 with dT(Y) = Y e  for Y E Q l ( 7 ~ ) .  

There follows a well-known theorem (e.g. @EL., Col, C021). 

Theorem 2.4. ~ The Lie bracket of vertical and complete lifts satisfy the following 
commutation relations 

[X". Y"] = 0 

[X', Y'] = [X, Y]" 

[X", Y C ]  = [X, Y]". 
(2.7) 
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The Lie bracket of vector fields can be extended to a graded Lie bracket on the graded 
space @ ( T ~ )  of multivector fields-the Schouten bracket [., .]. In this graded Lie algebra 
the space @ ' ( T ~ )  is of degree (r  - 1) .  Let be X E W ( T ~ ) .  Then 

[ x ,  Y A z] = [ x ,  Y ]  A 24- (-1)'"-')Y A [ x ,  21 

for Y E W ( T M ) ,  i.e. adx is a graded derivation of degree (r - 1) of the graded commutative 
algebra @ ( T M ) .  The mapping 

ad: (@(TM), [., .I) + Der(@(TM), A) 

is a homomorphism of graded algebras. For simple multivectors we have the following 
formula (cf [Mi]): 

[ X I A . . . A x p ,  Y I A . . . A Y q ]  

= c ( - ~ ) ' + ' [ x ; , Y j ] A X i A . . . x i - ]  AXi+l A., .AY,- l  AYj+] A . . . Y ,  
i.1 

(2.8) 

Theorem 2.5. The derivation dT commutes with the Schouten bracket, i.e. 

[dTX, d ~ y ]  = ddX,  Y l .  

ProoJ Let be X = XI A . . . A X,. By ( X I , .  . . , X& we denote a p-vector field 
X ;  A ' .  . A X i  A . ' .  A Xi and by ( X I , .  . . , X p z  a (p - 1)-vector field as above with 
the ith factor omitted. We then have dTX = cip,I(X~, . . . , X&. From the formula (2.8) 
and theorem 2.3 we get, for Y = Yl A . .  . A Y,, 

I P 4 
. . . , Xp),, ~ ( Y I ,  . . . , Y P h  

=' c C K X l ,  . . . I X P h ,  (Y l ,  . . . , Y&] 

m=l 

P Y  

"=I  m=1 

= 22 (~(-1I""[x:, YTl A ( X I , .  . ., Xp) :  A ( Y ] ,  . . . , Y q ) i  
n=l m=I #m 

f ( - I )""[Xi ,  y:] A ( X I , .  . . , xp): A ( Y I , .  . . , Yp): 
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On the other hand, 
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and the required equality follows. U 

We list the rules of contractions for Iifts of forms and vector fields in the following 
proposition. 

Proposition 2.6. For p E @'(%M) and X E @ ' ( T M )  we have 

(VT(P), VT(x)) = (TCP, x") = 0 

(drp. V T ( ~ ) )  = ( V T L  d d x ) )  = VT((K x ) )  = TZ(FL, x) 
(drp. dTX) = dT((FL, x ) ) .  

3. Lie derivations of forms and multivector fields 

The derivation dT on forms is strictly related to the Lie derivation in the algebra of 
differential forms. It can be considered as a total Lie derivative. This point of view is 
justified by proposition 3.1. Theorem 3.2 gives an analogous result for dT on multivector 
fields. 

Proposition 3.1. ([PiTu]). Let X: M -+ TM be a vector field on M .  Then we have 

(3J) * X x p  = X dTp. 
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Proof. Since X*: @(RTM) + @(TM) is a homomorphism and dT: @(TM)  + @(TTM) is 
a vyderivation, the mapping 

J Grabowski and P U r b A k i  

X*dT: @(RM) + @(TM) (3.2) 

is also a derivation. It follows that it is enough to verify the formula for functions and their 
differentials. We have for a function f on M 

X*dTf = dTf 0 x = (x ,  d f )  = x ( f )  

and 

X*dTdf = X*ddTf = d(X*dTf) = d(X(f)) = Lxdf. 

0 

To get an analogue to this proposition in the case of vector fields, we need an analogue 
of the pull-back of forms with respect to a vector field. Let X be a vector field on M. We 
have the decomposition of Tx(M,TM into horizontal (tangent to X(M) ) and vertical parts 

Tx(,qTM = HxTM VxTM. (3.3) 
The canonical projection TxTM -+-VxTM we denote by Px. Let Y E @'(TTM) be a 

vector field on T M .  By X*Y we denote the unique vector field on M such that 

vT(x*Y)lX(M) = PXY. (3.4) 

x*: @(TTM) + Q ( T M ) .  (3.5) 

The mapping Y H X*Y has the unique extension to a morphism of graded algebras 

Theorem 3.2. 
following formulae: 

Let X: M -+ TM be a vector field on M. For each A E @ ( T M )  we have the 

XxA = x*dTA 

and 

A = X*VTA. 

Proof. Since X*: (~(TTM) -+ @(TI) is a homomorphism and dT: ( ~ ( T M )  -+ @(TTM) is 
a vpderivation the mapping 

X*dT: ( ~ ( T M )  + @ ( T M )  (3.6) 
is also a derivation. It follows that it is enough to verify the formula for functions and 
vector fields. We have for a function f on M and a vector field Y on M 

X*dTf = dTf 0 X = (x ,  df)  = x ( f )  = Xxf 

and (proposition 2.6) 

T$(x*dTY(f)) = VT((X*dTy)(dTf)) = VT(x*dTy)(dT.f). 

On the other hand, 

(PxdTY)OX=dTYOX-TXoY 

and, consequently, 

(x*dTY)(f) (dTy,dTdf)oX- (TXoY,drdf). 
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Since 

and 

we get 

The second identity follows directly from the definition. 

Example 

Let be M = P, X = X(x)a/ax and Y = Y(x)a/ax. We then have 
a a 

ax a i  dTY = Y(x) - -I- Y’(x)i - 

and 
a a 

ax a i  dTYl,y = Y ( X ) -  + Y‘(X)x(X)-. 

The subspace of horizontal vectors is spanned by a/ax + X’(x)a/ai. 
decomposition of dTYI,x into horizontal and vertical parts is the following: 

Hence the 

a a 
Y(x)- + Y‘(x)X(x)- 

ax ax 
a 

= Y(x) - + X’(X)-- + (X(x)Y’(x) - Y(x)X’(x))-. (sax a i  a )  ax 
The vertical part is obviously the vertical lift of 

a 
(X(x)Y‘(x) - Y(x)X’(x))- = [X, Y](x) = fxY(x). ax 

In the following sections we represent a Poisson structure by a vector bundle morphism 
T*M --f TM rather than by a bi-vector field. We then need a formula for the Lie derivative 
of a bi-vector field 1 expressed in terms of 1‘. In order to get it, we first identify an 
operation dual to X*. 

The projection TTM induces an isomorphism TTM: HxTM 2 TM and the dual 
isomorphism (TTM)’:T*M + HZTM. 

When composed with (I - Px)’, this isomorphism gives an isomorphism T*M -+ 
ViTM, where ViTM is the annihilator of VxTM in T;(,,TM. It follows that for 
v E @‘(TTM) the decomposition 

U = (V  - VT(X*V)) f VT(X*V) 

is, on X(M), the decomposition related to the decomposition 

T&,,TM = HiTM @ V;TM 

dual to (3.3). For U = dTp we have VT(X*!J) = V T ( € X ~ )  (Ijroposition 3.1). Hence, for 
Y E @‘(TTM) we have 

(II, x*y) = ((dTI1, VT(X*Y))) 0 x = ((dTP - VT(~X!J), y))  0 x (3.7) 
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It is convenient to introduce an operation 

x+: ~ ( T M )  -+ (PCTTM): P +-+ dTP - VT(EXIL) 

which i s  a VT -derivation of degree 0. 

we have 
It follows directly from (3.7) that for Y E (P'(TTM) and P I , .  . . , p, E ( P ' ( T M ) ,  r > 0, 

(3.8) ( ( X + P d  A . .  . A ( x + P r ) ,  y )  0 x = (PI A . .  . A PF. x * y )  
so the mapping 

Xry.(Pi A . . . f i r )  =  PI) A . .  . A (X+L&) 
regarded as a homomorhism of graded algebras 

x* : W T M )  + @(TX(M)) 

T X ( M )  : T*,(M)TM + X ( M )  

where 

is dual to X* : 

(X*P, Y) 0 x = (P, X*Y). 

For I-forms we shall write X*p instead of X+p. 

Proposition 3.3. 
if and only if for every pair f, g of functions on M 

Let X be a vector field on M and let A be a 2-vector field on M .  fxA = 0 
, , ,  

(X*dg, FA'(X*df)) = 0. 

Proof. From theorem 3.2 it follows that f x h  = 0 iff 
- 1  

(dg, x*drA (df))  = 0 
for each pair (f, g) of functions on M .  From (3.8) we then have that 2x2 .  = 0 if and only 
if 

(Xadg, d%'X*df) = 0. 
n 

4. Symplectic and Poisson structures 

In this section we give definitions of symplectic and Poisson structures represented by 
morphisms of tangent and cotangent bundles. These definitions do not make use of the 
exterior derivative and of the Schouten bracket. 

By the standard definition, a symplectic structure on M is a non-degenerate, closed 
two-form o on M .  The canonical example is the 2-form QM on T*M. On the other hand, 
any 2-form on M can be represented by 

,z': I\ITM -+ /\'-'T*M i = 0 . 1 , ~  

The standard definition is expressed, in fact, in terms of $. We can also formulate a 
definition of a symplectic structure in terms of i;' making use of the well known formula 
for the exterior derivative: 
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A linear fibre bundle morphism u:/\'TM + / \ ' P M  represents a Proposition 4.1. 
symplectic structure on M if it is non-degenerate (in the obvious meaning) and 

X ( W ,  Z ) )  + Y ( W 3  X)) + Z ( v ( X ,  Y)) - a x ,  YI, Z )  - U([Y, ZI ,  X )  

-u([Z,  X I ,  Y) = 0 

where X ,  Y ,  Z E @'(TA,). 

We now provide a definition of a (pre-)symplectic structure in terms of E ' .  
We first need a condition for a &-form p to be closed in terms of 8'. 

Theorem 4.2. A 2-form p on M is closed if and only if 

dTp = (P ) QM ~. 
-1 * 

Proox From the formula 2.2 we have 

d i w  = ( p  QM -1 * 

and, consequently, 

-1 * dTp = diTp f h d p  = (p ) QM - iTd/l, 

Since iTdp = ~ O  iff d p  = 0, we get that d p  = 0 if and only if 

-1  * d W = ( l y  OM. 

0 

A condition for a vector bundle morphism u:TM + T*M to define a symplectic 
structure on M is given by the following theorem. 

Theorem 4.3. 
shucture on M if and only if the following diagram is commutative: 

An isomorphism u : T M  + T*M of vector bundles defines a symplectic 

62 TT*M + T*T*M 

T T M  T*TM 

T T M  --% TT*M 
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Proojf Commutativity of the diagram (4.1) is equivalent to the equality 

J Grabowski and P Urbm'ski 

(4.2) * -1 CYMOTVOKM=T w o n ~  o T v  

and to the d u d  (with respect to proper pairings) equality 
- 1  ay o TU* o KM = T*u o (QM )* o TU. (4.3) - 

Since (GI)* = -OM, we get from (4.3) that 
Tv = -TU* 

and, consequently, that U* = -U.  It proves that U is skew-symmetric and, consequently, 
that the exist a 2-form p on M ,  such that U = E'. The equality (4.2) now reads 

-1 * d p =  (P ) QM. 

It follows from theorem 4.2 that p is closed. 

one of three equivalent objects: 
(1) a bivector field A, 
(2) a homomorphism X' of vector bundles, 
(3) a bilinear, skew-symmetric function X'. 

[A, A] = 0. 

0 

As in the case of symplectic structures, a Poisson structure on M can be represented by 

The condition for A to be a Poisson structure is vanishing of the Schouten bracket: 

A skew-symmetric function 

A: AZT*M --f A 0 T M  rr. M x R 

Udf, h(dg, dh)) + h(dg, Udh, df)) + Vdh, Udf ,  dg)) = 0 

defines a Poisson structure if the following Jacobi identity is fulfilled: 

where f, g, h E @ O ( X M ) .  

u:T*M + TM, we need the following theorem. 

Theorem 4.4. 

In order to get a definition of a Poisson structure in terms of a vector bundle morphism 

A 2-vector field A on M defines Poisson structure if and only if 

  AM C dTA 
(one can say that AM and dTA are XI-related), where AM = (QM)-' is the canonical 
2-vector field on T*M. 

ProoJ In local coordinates A = fA'ja/ax' A a / a x j .  The 2-vector field A defines a 
Poisson structure if and only if 

The canonical 2-vector field AM on T*M is given by 

Moreover 

(4.4) 
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For a E T*M, 

i ' ( ( x * ) ( u ) )  = Aj'pi(u) 

and, consequently, 

676 1 

Hence 
a a  a a   AM = E A ' ' ~  A + X p t A ' j  ($An)  - ai' A -. a u  (4.6) 

iJ tjk 

It follows from (4.5) and (4.6) that  AM C dTA if and only if 

but this is equivalent to (4.4). 

Now, we are ready for a proof of an analogue of theorem 4.3. 

Theorem 4.5. A vector bundles morphism A T"M -+ TM defines a Poisson structure on 
M if and only if the following diagram is commutative: 

TT*M - T*T*M 
AM 

TTM f-- T * M  
T I  

Proof: Commutativity of the diagram is equivalent to 

T A o A M  o T  A = E ; O T A O E M  - 1  * 
and to the dual equality 

T A  0 (GI)* 0 T*A = E L  0 TI* 0 sM. 
- 1  * -  -1 Since (AM ) - -AM we get TA* = -TA and, consequently, I* = -A. It follows that 

there exists a bivector field A on M such that ,I = x'. From theorem 4.4 we have that A 
is a Poisson structure if and only if the diagram (4.7) is commutative. 
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In the diagrams, T*A is a relation (not a mapping) and diagrams are in the category of 
relations. 

structure. Let M = V be a vector space. We have obvious identifications: 
In order to illustrate the condition (4.7). let us consider the case of a linear Poisson 

TV = ~ V  x ToV = V x V sT*V = V x V* 

TTV = (V x V )  x (V x V )  

T*T*V = (v x v*) x (v* x v). 
rr*v = (V x V*) x (V x V*) 

With these identifications the canonical morphisms EM,  KM. G' look like the following: 

E V : T * T V ~  ( v , w ; u , ~ ) H  ( u , b ; w , a )  E T * V  

K y : T V  3 (U, W ;  X,  y )  H (U, X; W ,  y )  E Tv 

~ ' : T * T * V 3 ( u , a ; w , b ) ~ ( u , a ; - w , b ) ~ T T * V .  
A linear Poisson structure A is given by a mapping 

K':T*V 3 (U, a) H ( U ,  I (u ,  a)) E T V  

T A ' : ( u , a ; w , b )  H (u ,A(u ,a ) ;  w ,A(u ,b )+h(w ,a ) )  
where A: V x V* + V is bilinear. For  such^ A we have - 

T *-I .  A .(U, I ( v , d ) ;  a, b) (U, d; a + *I (b ,d ) ,  A*(u, b))  
where * I  and A* are conjugate to h with respect to the left and to the right argument 
respectively. The condition (4.7) reads as follows. 

The mapping A' defines a Poisson structure if and only if the following conditions are 
satisfied for each U, a, b: 
(1) A(u. b)  -I*(u,  b), 
(2) I ( u .  * I @ ,  a)) = VVU, a), b)  - W(U, b ) , a ) ,  
which means that 

* A :  v* x v* -+ v* 
is a Lie bracket. 

5. Tangent Poisson structures 

Let ( M ,  A) be a Poisson manifold, where M is a manifold and A E @*(TM) satisfies 
[A, A] = 0. It follows from theorem 2.5 that (TM, dTA) is also a Poisson manifold: 

[dTA, ~ T A ]  = dT[A, AI = 0. 
We call drA the tangent Poisson structure. In local coordinates let 

then 

The Poisson structure A defines a Poisson bracket {f, g}A'  = A(dfhdg) which provides the 
algebra @ O ( T M )  of smooth functions with a structure of Lie algebra. The tangent Poisson 
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structure defines a Poisson bracket [, ]dTA on T M  which is characterized by the following 
relations: 

This is exactly the lift of A defined in [sdA,Co3]. For a 1-form p E @'(TM) we put 
A@ = iwA. For a function f the vector field Adf is the Hamilronian vecrorfleld generated 
by f .  

Theorem 5.1. 
structure in TM:TM 

The tangent Poisson structure dTA is linear with respect to the vector bundle 
M. Moreover, for p, 8 E @(a) we have the following formula: 

[kp. iT8]dTh = iT(d(A, I(. A 6') + iA,.d6' - in,dfi). (5.3) 

and the theorem follows. 0 

Since dTA is a linear Poisson structure, it defines an algebroid structure in the dual~vector 
bundle T*M. The theorem provides an explicit formula for the Lie bracket in @(zM): 

b, = W ,  p A 8 )  + in,,+ - iAoP 

= E A , , ~ ' - E A , , ~ - ~ ~ ( A , P A ~ ) .  

This is exactly the well-known extension of a Poisson bracket to I-forms. Thus we have 
obtained a new way of defining it using the tangent lift. 
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Example 

Let us consider the Poisson structure on BZ given by 

J Grabowski and P Urbarfski 

The tangent lift of this structure is given by the following formula: 

, a  a a a a a  
ax ay ax ay ax a+ dTA = X  (-A - 4- - A  7) +2Xx-: A -; 

For 1-forms p = pi(x, y)dx + pz(x, y)dy and 79 = 791(x, y)dx + 792(x, :. .’ we have 
iTp = p ~ ( x ,  y)f + p?(x, y)? and iT79 = IJl(x, y)x + t?z(x. y)y. We can easily calculate 
the Poisson bracket 

-791 (FX + *j) + $2 (-x ap t  . + -4 ap,. + 2xi@1792 - /12791). 

ay ax ax 

Hence, [iTM, iTfiP)dTA = iT{p, @]A, where 

ax ax 

6. Canonical vector fields 

It is well known [Tu21 that for a symplectic manifold (M, o) thetangent structure (TM, dTo) 
is also a symplectic manifold. We use proposition 3.1, to get a simple proof that canonical 
vector fields on a symplectic manifold are Lagrangian submanifolds with respect to the 
tangent symplectic structure (compare with [SdA]). It justifies the concept of a generalized 
canonical system as a Lagrangian submanifold of the tangent Poisson manifold. 

Proposition 6.1. Let X :  M + TM be a vector field on a symplectic manifold ( M ,  0). The 
vector field X is canonical, i.e. E x o  = ~ O  if and only if X(M) is a Lagrangian submanifold 
of (TM, drw). 

Proof: From the proposition 3.1, fxo = X*dTo. Hence fxw = 0 if and only if 
X*dTw = 0, but the last means that X(M) is isotropic in V M ,  dTw) and, consequently, 

0 

We have an analogue of this theorem for Poisson manifolds. To formulate it we need 

Lagrangian (the dimension of X(M) is~equal to the dimension of M ) .  

the definition of a Lagrangian submanifold of a Poisson manifold. 

Definizion. 
for each m E N 

Let (M, A) be a Poisson manifold. A submanifold N c M is Lagrangian if 

Xl(T,,,N)” = K’(T:M) nT,N (6.1) 
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Theorem 6.2. Let X M + TM be a vector field on a Poisson manifold ( M ,  A). X is 
canonical, i.e. ExA = 0 if and only if X(M) is a Lagrangian submanifold of (TM, dTA). 

ProoJ From proposition 3.3, E x A  = 0 if and only if, for j ,  g E C"(M), 

(dz ' (X*df) ,  X*dg) = 0. 

On the other hand, X(M) is Lagrangian if for each U E X(M) 

(dz'(X*df)(v)I j E Cm(M)] =T,X(M) ndz'(T:TM). (6.2) 
Since w ET,X(M) is characterized by X*d f (w) = 0, the inclusion 'c' is equivalent to 

- 1  
(X*df)(u), X*dg) = 0. 

Thus, if X(M) is Lagrangian then X is canonical. In order to prove that for a canonical 
X the submanifold X(M) is Lagrangian, it is enough to show that the inclusion 3' holds. 
Let be a E C T M .  There are functions f ,  g on M such that a = d,(dTf) + du(VTg). We 
then have (2.9) 

d z ' ( a )  = dT(x'df) + vT(;i'dg). (6.3) 

It follows that 

(6.4) 
- 1  TrM(dTA a)  = TTM(dT(xldf) = x'd,f 

where m = T ~ V ,  Thus the tangent pgections of vectors in TX(M) n dz ' (T*TM) are 
in the image of A'. For a vector w E A'(T*M) there is only one vector U E TX(M) such 
that T r M v  = w, namely, U = TX(w). Let be w =~A'd, j .  The inclusion 'c' implies that 
dz'(dx(,)(dT j - VT(xj)) is tangent to x(M). Since (6.3) and (6.4) 

we have dz'(X*df)(X(m)) = TX(w). 

- 

TrMdz'(d(dT f - vT(Xf))(X(m))) = x'd, j = w 

O 

7. Tangent Poisson-Lie structures 

The growing interest in Poisson-Lie structures justifies analysis of every aspect of these 
structures. We show that the tangent lift of a Poisson-Lie structure is a Poisson-Lie structure 
(theorem 7.1). Vertical and complete lifts of left- (right-) invariant vector fields on G turn 
out to be left- (right-) invariant on TG. 

Since there is a canonical identification 
T(M x N )  Y TM x TN, we have also canonical inclusions A'TM x A'TN c A2T(M x N )  
and @ * ( T ~ )  fB @'(TN) c @*(TN,M) .  It is trivial task to verify, that if (M, A) and ( N ,  il) 
are Poisson manifolds then (M x N ,  A fB il) is also a Poisson manifold. The Poisson 
structure A @ n is called the product Poisson structure. Finally, we recall the notion of a 
Poisson map. A smooth mapping 'p: M + N is a Poisson map if 

Let M, N be differentiable manifolds. 

A'T'p o A = n o'p 

or, equivalently, 

T~~ X o ~ * ' p  = fi - -  - 
where x = A ' ,  n = i l l .  
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Let (G, m) be a Lie group and let (G, A) be a Poisson manifold. We say that (G, m, A) 
is a Poisson-Lie group if the group multiplication m is a Poisson mapping: 

m: (G x G, A @ A) + (G, A) 

or, equivalently, 

T~ (X X) o ~ * m  = X. 
We say in this case that A is multiplicative. 

Applying the tangent functor to (7.1), we get 

TTmo (TX x T X )  oTT*m =Ti;. 

It is well known that (TC, Tm) is a Lie group. 

(7.1) 

(7.2) 

Theorem 7.1. Let (G, m, A) be a Poisson-Lie group. Then (TG, Tm, dTA) is also a 
Poisson-Lie group. 

Proof: We have to show that dTA is multiplicative with respect to Tm, i.e. that 

TTm o ( d x  x d z )  o T*Tm = d z .  - 
Since, due to (2.6), dTA = KC o TX o~sc, it follows from functorial properties of K and E 
that 

TTm o (dyA x dyA) o T*Tm = TTm o K C ~ C  o (TX x TK) o &crc o T*Tm 

= KC oTTm o (TX x X) oTT*m O E G  

and by (7.2) the required identity follows. U 

Let g be the Lie algebra of the Lie group G. The tangent bundle TG can be trivialized 
by right or left translations: 

(Kr, r c ) : T G  -+ g x G 

or 

(TC, K') :TG + G x g 

where K' (K ' )  is the right-invariant (left-invariant) Maurer-Cartan form. 
structure in TG is given by the formula 

The group 

(X, 8 ) .  (Y, h) = (X + Ad(g)Y, g h )  

in the right trivialization and 

( E .  X). (h, Y) = (gh, X + Ad(h-')Y) 

in the left trivialization. The neutral element eT is represented by (0,e) in the right 
trivialization and by ( e ,  0) in the left trivialization. 

The Lie algebra Tg of TG is isomorphic as a linear space to g x g. This isomorphism is 
implemented by the zero section jc: G -+ TG and the obvious embedding j g : g  -+ T,G c 
TG and is given by the following formula: 

g x g 3 (X, Y) + T,jc(X) + Toj,(Y) E T,rTG. (7.3) 
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From now on we shall denote T,jc(X) by X and T0jg(Y) by ?. We have the following 
commutation rules: 

[X, YITg = [x,  Yi, 
1x1 FIT9 = r?, y1Tg = [x, ylg 

[x,  YlTg = 0. 
^ A  

It follows that the Lie algebra Tp is a semidirect product g P( p with respect to the adjoint 
representation in p of the Lie algebra g, i.e. 

[ ( X ,  Y ) ,  (X ' .  Y')Igsg 

Let be X E g and let X i  be the corresponding left-invariant vector field on 

( [ X ,  X'Ia,  1x3 Y'Ig + [Y,  X ' I g ) .  

Theorem 7.2. 
G. Then 

i.e. the corresponding to x̂  and X left-invariant vector fields on TG are the vertical &d 
complete lifts of XL respectively. An analogous statement is true for, right-invariant vector 
fields. 

ProoJ 
m in G. It follows that 

??& = (X',)" and Xi& = ( X i ) "  

The group multiplication Tm in TG is the tangent lift of the group multiplication 

Tm(u,, U h )  = T & ( U h )  + T&(U,) 
where L, and Rh are left and right translations by g and h respectively. The left translation 
LIg by U, in TG i s  therefore given by 

Lzz(Uh) = T&(Uh) fTRh(U8)' 

It is easy to verify that (XLy(e') = X and (Xi )u(eT) .  Since the mapping (7.3) is.a linear 
isomorphism, it is enough to show that vector fields ( X i ) "  and ( X i ) "  are left-invariant 
on TG. In other words, we have to show that flows they generate commute with left 
translations. 

The flow @' of the vertical lift is given by 

@'(Uh)  = Uh + t X i ( h )  
we then have 

Liz o@'(Uh)  =TL,(Uh +tX',(h))+TRh(U,) 

= TL,(ua) +TRh(u,) + rTLg(X',(h)) 

= TL,(Uh) +TRh(U,) + tXb(gh) = @' 0 L:(Uh). 

We made use of the left-invariance of X i .  
The flow of the complete lift (X',,' is the tangent lift of the flow (0' of X i .  We have 

oTp'(Uh) =TL,  OTpf(Uh) +TR#(h)(us) 

=T(& o d ) ( U d  +TR,,(h,(U,) 
and, since ip' is the flow of aleft-invariant vector field, i.e. 

L, opf = pf 0 L,  



U 

8. Tangent Poisson-Lie algebras of Poisson-Lie groups 

In this section we show that the tangent to the Poisson-Lie algebra of a Poisson-Lie group 
(G, A) is the Poisson-Lie algebra of the Poisson-Lie group VG, drA). A special case of 
of Poisson stlllctures defined by r-matrices is discussed. 

The Lie algebra of a Poisson-Lie group inherits a Poisson structure. We recall here a 
standard construction. More natural and more geometric one will be given in section 10 
(proposition 10.4). 

Let (G, m, A) be a Poisson-Lie group. A Poisson structure A on a Lie group can be 
regarded, using the right trivialization of TG, as a mapping A: G g A g. The Poisson 
structure A is multiplicative if and only if is a I-cocycle of G with respect to the adjoint 
representation of G in 9 A g. In particular, we have x(e)  = 0. The tangent mapping 

h = T,x:T.G = g + To(g A g) = E  A g  

being a 1-cocycle of g. defines a cobracket (Poisson bracket on 0). The pair (0, A) is called 
the tungent Poisson-Lie aIgebru of the Poisson-Lie group (G, m. A). 

Let ( X I , .  . . , X,) be a basis of the Lie algebra g. We can write 

A = X h . " X ; A X j  

where hij are smooth functions on G and X I  are the corresponding right-invariant vector 
fields. We then have 

x ( g )  = X A " ( g ) X j  A xj 

and 

A ( X k )  = ( X k ,  dA"(e))Xi A X j  = $.?Xi A X j  

where cy  are structure constants of the Lie algebra g. The cobracket A: g + g A g may be 
regarded as a bivector field on g which defines a linear Poisson stlllcture on 8. 

Definition. A Poisson-Lie algebra (0,s) is a Lie algebra g and a I-cocycle (cobracket) 
6: g + g A g (with respect to the adjoint representation of g in g A g) such that it defines a 
Poisson structure on g or, equivalently, that the dual mapping 6*:g* A g* is a Lie bracket 
on g*. 

The tangent Poisson-Lie algebra is an example of an abstract Poisson-Lie algebra. 
For simple connected Lie groups there is one-to-one correspondence between Poisson-Lie 
structures on G and Poisson-Lie algebra structures on g. The Poisson-Lie algebra (0, h) 
can be seen as a quadruple (0, g*, [., -1, [., .I*) and, for this reason, it is called sometimes 
a Lie bialgebra. 
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Let A: g -+ g A g be the cobracket of the tangent Poisson-Lie algebra of a 

dTA: Tg + Tg A Tg 
is the cobracket of the tangent Poisson-Lie algebra of the tangent Poisson-Lie group 
(TG, Tm, dTA). The dual mapping 

Theorem 8.1. 
Poisson-Lie group (G, m, A). Then 

(dTA)*: (Td* A (Td* -+ FE)* 
is the Lie bracket on the tangent Lie algebra of (e*. A*). 

Prooj For any X E W ( T ~ )  and for any smooth function f E O o ( r ~ )  we have 

dT(fX) = T$(f)dTx f dTf ' V T ( ~ ) .  
Moreover, Y"(r2.f)  = 0, Y"(dTf) = Y'(T2.f) = T z ( Y ( f ) )  and yc(dTf) = dT(Y(f)) 
for any vector field Y E @'(TA,). 

Now, let A = A'jX; A Xj' ,and A(X,) = &;Xi A Xj for a basis (XI,  . . . , X.) in g. We 
have 

d ~ h  = 27:(AV)(XL)" A (x;)" -k dT(Aij)(Xl)" A 

= 2~:(A'j)(Xt)~ A (?jy +dT(A'j)(zcy A (2,y. 
The cobracket 8 on the Lie algebra of TG is given by the formulae 

6(?k) = (Xi)"(2T~(A'j))(er)Xi A ?j t (Xi)"(dT(A"))(C')i?i A 

= T:(X;(A'j))(e')?j A ?j = XL(A'j)(e)?; A ?j 

= (Xk, dA")(e)?j A ??j = $cy?' A ?j 

and 
S(X,) = (X;)C(2rT;(A'j))(er)Xt A zj 4- (XL)'(dT(Aij))(er)Z A 

= ZX;(A")(e)X; A gJ + dT(xJ(Aij))(er).?; A ?j 

A = ='jX. A xj 
k '  

(dT(f) is zero on the zero section). It follows that S = dTh. 0 

Let (G, m, A) be a Poisson-Lie group and let (0, [, 1, p) be its Lie bialgebra. Let us 
suppose that p is a coboundary (e.g. G is semisimple), i.e. that 

p(x) = [x ,  r] = +'([x, x i ]  A xj + xi A [x, x,]) 

for some r = fjXi A Xj E g A g. It is known [Dr] that in this case the Poisson structure A 
on G can be written in the form 

A = f  - f  

where t' and f are the left- and right-invariant 2-vector fields corresponding to r. Since A 
is a Poisson structure, r must satisfy the generalized classical Yang-Baxter equation 

adx[r, r] = 0 
for every X E g. The bracket [r, r] is the algebraic Schouten bracket. An element of g A g 
which satisfies this equation is called a generalized r-matrixand the corresponding Poisson 
structure A i s  called quasitriangular. 
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Theorem 8.2. - f' be a quasitriangular Poisson-Lie structure on a Lie group G 
with the r-matrix r = rijXi A xj ,  rii = -rj[. The_n dTA is a quasitriangular Poisson-Lie 
structure on TG with the r-matrix dTr = 2#X;  A X j .  

Proof: Since A = r"(Xf A XJ - Xi A Xj'), we have 

J Grabowski and P Urbariski 

Let A = 

dTh = 2fj((XIy A ( x j y  - (xl)' A (xj')") 

= 2fj((ki)' A ( % ) I  - A (FjY)  = (dTr)' - (dTr)' 
and it is easy to check that dTr is really an r-matrix. 0 

9. Tangent lifts of generalized foliations 

Symplectic foliations of Poisson manifolds are important examples of generalized foliations. 
In this section we define the tangent lift of a generalized foliation and discuss its basic 
properties. 

Definition. A generalized distribution on a manifold M is a subset S c TM such that 
S ( x )  = S fl T,M is a linear subspace for each point x E M .  S is said to be smooth if it is 
generated by the family 

X ( S )  = (X E @'(nf):Vx E M  X(x) E S(x)]  

of smooth vector fields, i.e. S ( x )  is spanned by (X(x): X E X ( S ) ] .  

integral submanifold of S, everywhere of maximal dimension, which contains x .  

partition of M ,  called the generalizedfoliarion of M defined by S. 

A smooth distribution is completely integrable if for every point x E M there exists an 

The maximal integral submanifolds of a completely integrable distribution S form a 

Let us notice that for a completely integrable distribution S the family X ( S )  is a Lie 
subalgebra of the Lie algebra of vector fields on M .  The following theorem is due to 
Sussmann [Sus]. 

Theorem (Sussmann). 
of vector fields such that 2, spans S. The following properties are equivalent 
(1) S is completely integrable, 
(2) S is invariant with respect to flows exp(tX) of vector fields X E D, 
(3) flows of vector fields from X ( S )  preserve S. 

Theorem 9.1. Then the 
distribution ST generated by the family [Xu, Xc: X E X ( S ) ]  of vector fields on TM is 
completely integrable 

Prooj We have exp(tX')(u) = U + rX(r@) and exp(tXc) = Texp(tX). Due to the 
formulae 

Let S be a smooth distribution on M and let 2) c X ( S )  be a family 

Let S be a completely integrable generalized distribution. 

(exp(tX")),Y" = Y" (exp(tX"))*Y' = Yc+ t[X, Y]" 

(exp(tXc))*Yc = ((exp(rX))*Y)' 

and 

(exp(tX'))*Y" = ((exp(rX))*Y)" 
it follows that ST is invariant with respect to flows of Xc and Xu. From the theorem of 
Sussmann, ST is integrable. U 
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The tangent foliation PT of a generalized foliation 3 defined by S is the Definition. 
foliation defined by ST. 

Example 

Let us consider the distribution S on R, generated by vector fields vanishing at 0 E R. The 
corresponding foliation is as follows: 

F=((O),&,R-) where E + = [ x ~ B : f x s O ) .  

We identify TE with R* (with coordinates ( x ,  y ) )  and we get that vertical and complete 
lifts of vector fields from X ( S )  are of the form 

and 

where f E P ( R )  vanishes at 0. 
These vector fields generate the distribution ST with ST(x. y )  = span @/ax.  a / a y )  if 

x # 0, ST(O, y ) ~ =  span @ / a y )  if y # 0, and ST(O, 0) = {O]. Hence, the corresponding 
tangent foliation Fr consists of two half-plains P* = { ( x ,  y ) :  f x  s~ 01, two half-lines 
L* = ((0, y ) :  f y  s 0)  and the point (0,O) as a zero-dimensional leaf. 

Proposition 9.2. If a 1-form p annihilates a completely integrable distribution S then V T ( ~ )  
and dT(/L) annihilate ST. 

Proof: Let X E X ( S ) .  We have from proposition (2.6) that 

(VT(PIL), x") 0 (dT(P), x') = dT(PL, x )  0 

and 

(VT(P), x") = (dT(P), x") = VT((P, x ) )  = 0. 

0 

Proposition 9.3. If a submanifold N c M is a union of leaves of the foliation P ( N ~  is 
3-foliated) then T N M  = T;'(N) is FT-foliated. 

Proof: It is enough to prove proposition in the case of N  being a single leaf. Let F be 
a leaf of FT. Since T T M ( X " )  = 0 and TTM(X') = X for any vector field X on M, 
the tangent projection ~ M ( F )  of F is contained in a leaf of 3. It follows that T N M  is 
PT-foliated. 0 

Proposition 9.4. 

Proof. It is obvious that T F  c ST where S is the generalized distribution related to F. 
We have to show that T F  is maximal. Since F is maximal, T,F = S(x)  and S ( F )  is 
spanned by vector fields tangent to F .  On the other hand it is easy to see that if X is a 
vector field on M ,  tangent to F on F ,  then dTX and VTX are tangent to T F  on T F .  Since 
ST is generated by the family ( X u ,  X c :  X E X ( S ) ) ,  ST(TF) = T T F ,  i.e. TF is an integral 

0 

If F is a leaf of 3 then T F  is a leaf of 3T. 

submanifold of ST which is clearly maximal. 



6112 

10. Symplectic foliations of Poisson manifolds 

Let ( M ,  A) be a Poisson manifold. The characteristic distribution S of A is generated by 
Hamiltonian vector fields. It is well known that S is completely integrable and that A 
defines symplectic structures on leaves of S. 

Proposition 10.1. 

ProoJ Since the vertical and tangent lifts of 1-forms on M generate the module of 1-forms 
on TM, it is enough to notice that (2.9) implies 

J Grabowski and P Urbadski 

ST is the characteristic distribution of dTA. 

(vT(!-L), dTA) = (ipA)" and (dT!-L, dTA) = ( ipNc 
and that, consequently, the characteristic distribution of dTA is generated by the complete 
and vertical lifts of Hamiltonian vector fields on ( M ,  A), i.e. of vector field from X ( S ) .  0 

The following theorem by Weinstein [We] describes the local structure of a Poisson 
manifold. 

Theorem (Weinstein). Let ( M ,  A) be a Poisson manifold of rank 2k at xg 4 M .  Then 
there is an open neighbourhood U of xo such that (U,&) is isomorphic to a product 
( N  x V ,  AN x AV) of Poisson manifolds where ( N ,  A,) is a symplectic manifold of 
dimension 2k and the rank of ( V ,  A Y )  is zero at 20, xo = (yo, 10). 

The theorem of Weinstein shows that while analysing only local properties of Poisson 
manifolds it is enough to consider two cases: 

(1) A is regular, 
(2) A vanishes at a point. 

Theorem 10.2. Let ( M ,  A) be a Poisson manifold. 

(1) If A is a regular Poisson structure of rank 2k then dTA is regular of rank 4k. 
(2)  If A is of rank 0 at xo E M then T,,M is a Poisson submanifold of f l M ,  dTA) and 

dTA defines on T,M a linear Poisson structure (Kostant-Kirillov-Souriau structure). 
It induces then a Lie algebra structure on T i M .  

ProoJ 
(1) It follows from the theorem of Weinstein that we can choose local coordinates on M 

such that 
. . a  a .. 

A = A'J- A - A" = -Aii det(A'j) # 0 
axi ax j  j . k 1  

where Aij are constant. Hence, in the adopted coordinate system, 

(2)  We have locally 
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Hence T,,M is a Poisson submanifold with the Poisson bracket 

U 

Corollary. 
formula 

If A is of rank 0 at xo then the Poisson structure dTA on Txo is given by the 

dTA(U) = VT(€~A)(U) U E T,,M 

where C E ~ ' ( T M )  is such that T(xo).= U. 

ProoJF Since A(x0) = 0 it follows that dTA(u) is vertical and, consequently, 

VT(PdTA)(U) = dTA(U) 

(see section 3). It follows from theorem 3.2 that 

dTA(u) = VT(S;A)(U). 

0 

The following two propositions complete OUT discussion on the structure of the tangent 
Poisson manifold. 

Proposition 10.3. Let f be a local Casimir of A, i.e. A(df, .) = 0. Then V T ( ~ )  and dT(f) 
are local Casimirs of dTA. 

Moreover, if A is regular at x E M with symplectic leaves determined by Casimirs 
(fl, . . . , f,,), then A is regular at U E T,M with symplectic leaves determined by Casimirs 
(TZ(f i ) ,  ..., T;(fd. d ~ f i , .  . . , dTfd  

ProoJ It follows from (2.9) that if f generates a zero-Hamiltonian field then also T; f 
and dTf generate the zero-Hamiltonian field on T M ,  i.e. they are Casimirs. 

Let x E M be a regular point of A with the symplectic foliation in the neighbourhood 
of x defined by Casimirs (fl, . . . , fn). We may assume that dfi, . . . , df, are linearly 
independent at x .  It follows that (dTZ(fl), . . . , d'r;(fn), ddTfl, . . . , ddTf.) are linearly 
independent at U E T,M. Since the rank of dTA is 2(dim M - n )  (theorem 10.2) the theorem 
follows. 0 

If (G. A) is a Poisson-Lie group then A(e)  = 0 and identifying g with T,G we get a 
Poisson structure on g induced by dTA. 

Proposition 10.4. The Poisson structure on g induced by dTA is equal to the Poisson 
structure defined by the cobracket of the tangent Poisson-Lie algebra. 
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Pro05 
( X i )  of the Lie algebra g, Xi  = a(e)/axi. There are functions U: on G such that 

Let (xi) be a coordinate system on G centered at e ,  i.e xi (e) = 0. It defines a basis 

where af(0) = 0. We then have 

and 

The induced cobracket A is given by 
Aii(0) = hii(0). 

On the other hand, 

11. Examples 

Example I 

On su(2)* 1: R3 consider the linear Poisson structure 
a a  a a  a a  

ax ay ay , a2 az ax 
A =z -  A- + X -  A - +y-A -. 

The symplectic foliation of R3 is the union of two-dimensional spheres xZ+y2+z2 = r > 0 
and the origin (0, 0,O) as a zero-dimensional leaf. It is regular outside the origin and is 
defined by the Casimir f ( x ,  y .  z) = x z  + yz + z2. 

The tangent Poisson structure is given by the formula 

dTA=Z 

a a a  a a  a a  a a  
a i  ax az ax ') a i  ay  a j  az ai a i  - A  - + - A - +z- A - +.?-A 7 + + - A  -. 

The symplectic foliation of TR3 is regular outside T0R3 and it is determined by two Casimirs 

The tangent space TOR3 
fo(x ,  y ,  2 ,  i ,  j ,  i) = xz 4 Y2 + z2 f i ( x , y , z , i , j , i )  = x i + y y + z i .  

R3 has a linear Poisson structure 
. a  a . a  a a a  
ax a j  a+  az ai ax 

Z- A - + X-  A T=+ y- A 7. 

which is equal to A. 
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Example 2 

In this example M = R4 and A is the following quadratic Poisson structure: 

a a  a a  a a  
an3 ax, ax4 axz ax, ax3 

A = X I X ~ - A - + X ~ X ~ - A - + X ~ X ~ - A -  

a a  2 2 8  a 
-axl ax4 ax2 ax, 

+X2X4- A - + (X3 +X4)- A -_ 

This structure is degenerate at points of the linear subspace x3 = x4 = 0 and regular outside 
it. The symplectic foliation is the iniersection of the “book‘ foliation generated by vector 
fields x3a/ax3 + x4a/ax4, ~a/axl  and a/ax2, consisting of threedimensional half-spaces 
sewn up along the two-dimensional edge x3 = x, = 0 of zero-dimensional leaves, and the 
spherical foliation. 

The unit sphere S3 = ( x :  Cxf = 1) we identify with the SU(2) group by 

X I  + ix2 -x3 + ixq 

> .  3 x3 + ix4 X I  - ixz 
(XI.XZ.XJ,X4) - 

With this identification, the tensor A restricted to S3 defines a Poisson-Lie structure on 
SU(2). This structure is quasitriangular with the generalized r-matrix 

a a  
ax3 ax4 r = - A - E 5u(2) A su(2). 

Here we used identifications 

m(2) = TJUQ) Y T~i,o,o.o,S3 

so in the matrix form 

It is worth noticing that this Poisson-Lie structure is related to the quantum SU(2) group 
of Woronowicz (cf [Cr]). 

Singular points on S3 form a one-dimensional circle x: + x i  = 1, x3 = x, = 0 
which corresponds to the Cartan subgroup (maximal torus) of SU(2). At a singular point 
x = (cos p, sin p, 0, U ) ,  the tangen1 space T,S3 carries a linear Poisson structure induced 
by dTA 

d . r h l ~ ~ s s  = COS((0) 

associated with the Lie bracket 

[il , X 3 i  = sin(?)& 

[XI, i,] = sin(q)i4 

112, = - COS(q)i3 

{1~,2,b] = -COSfp)X3. 
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In particular, on TJU(2) = T(l,0,o,o>S3 we have 
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a a  a a  L-A--+~~-A---. a i 4  a i ,  a i 3  a i ,  
It follows that the cobracket A of the tangent bialgebra of the Poisson-Lie group SU(2) 

is given by 

a a  A ( & ) = O  

and the associated Lie bracket on su(Z)* is given by 

[i4, i,] = X4 [i3, Xz] = X3 [&, i3) = 0. 

We recognize this structure as the structure of the Lie algebraBb(2, C) of 2 x 2  traceless, 
upper triangular complex matrices with real diagonal elements. 

The introduced Poisson-Lie structure on SU(2)  defines then the group SB(2, C) as the 
dual group. It is not difficult to verify that the corresponding double group can be identified 
with SL(2,  C) with SU(2)  and SB(2, C) canonically embedded as subgroups. 

12. Conclusions 

In this paper we introduced lifts of multivector fields and related objects (like generalized 
foliations) from a manifold M to its tangent bundle. These operations can be considered as 
an extention of the tangent functor to these objects and corresponding structures. We called 
them tangent lifts. 

Among new results are those stating that the tangent lift operator dT on multivector 
fields commutes with the Schouten bracket (theorem 2.4), that the symplectic foliation 
of the tangent Poisson structure is the tangent foliation of the given Poisson structure 
(proposition lO.l), and that the tangent lift of a Poisson-Lie structure is a Poisson- 
Lie structure (theorem 7.l), etc. We proved also theorems describing Poisson structures 
by conditions for morphisms of the tangent and cotangent bundles (theorem 4.4 and 
theorem 4.5). 

Some of results refer to already known facts, but the used methods give us new point 
of view, show better relations between different objects and provide deeper understandig 
of some well-known structures and facts as special cases of more general situations (cf. 
theorem 5.1 and theorem 10.2). 

We are convinced that these results show the importance of the concept of tangent 
structures in general and of the derivation dT in particular. The next step should be 
the analysis of multitangent constructions, important for classical field theory (multiphase 
approach) and classical mechanics, of extended objects. As we have seen, the conditions 
discussed in section 4 are, in fact, compatibility conditions of tangent and canonical 
structures. This idea can be applied in more general situations like in non-relativistic, 
time dependent mechanics, where the structure needed is more general than Poisson or 
symplectic one ([Ur]). Results of further studies on tangent lifts togetha with applications 
to analytical mechanics will be given in a separate publication. 
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